

GYROSKOP & BESCHLEUNIGUNGSSENSOR SEN-MPU6050

1. ALLGEMEINE INFORMATIONEN

Sehr geehrter Kunde,

vielen Dank, dass Sie sich für unser Produkt entschieden haben. Im Folgenden zeigen wir Ihnen, was bei der Inbetriebnahme und der Verwendung zu beachten ist.

Sollten Sie während der Verwendung unerwartet auf Probleme stoßen, so können Sie uns selbstverständlich gerne kontaktieren.

Funktion	PIN
Versorgungsspannung (3,3 - 5 V DC)	VCC
Versorgungsspannung Bezugspotential	GND
I2C Taktleitung (3,3 V Logik)	SCL
I2C Datenleitung (3,3 V Logik)	SDA
Externe I2C Datenleitung (3,3 V Logik)	XDA
Externe I2C Taktleitung (3,3 V Logik)	XCL
I2C Adress-Pin Schließen Sie ihn an 3,3 V an, um die I2C- Adresse von 0x68 auf 0x69 zu ändern	AD0
Interrupt Output Pin (3,3 V Logik)	INT

3. INBETRIEBNAHME MIT DEM RASPBERRY PI

Diese Anleitung wurde unter Raspberry Pi OS Bookworm für den Raspberry Pi 4 und 5 geschrieben. Es wurde keine Überprüfung mit neueren Betriebssystemen oder Hardware durchgeführt.

Anschluss:

Raspberry Pi	MPU6050
3v3	VCC
GND	GND
SCL (Pin 5)	SCL
SDA (Pin 3)	SDA

Nachdem der Sensor angeschlossen ist, müssen Sie I2C aktivieren. Öffnen Sie dazu das Terminal und geben Sie folgenden Befehl ein:

sudo raspi-config

Aktivieren Sie nun unter Interfacing-Options -> I2C die I2C-Schnittstelle.

Führen Sie nun die folgenden Befehle aus, um alle nötigen Bibliotheken zu installieren:

sudo apt-get update

sudo apt-get install python3-smbus

Sie können sich den Beispielcode mit dem folgenden Befehl herunterladen:

wget https://joy-it.net/files/files/Produkte/SEN-MPU6050/SEN-MPU6050_Beispielcode.zip

Entpacken Sie die Datei mit dem folgenden Befehl. Achten Sie dabei darauf, dass das Verzeichnis in dem die Datei liegt bei Ihnen abweichen kann.

unzip SEN-MPU6050_Beispielcode.zip && rm SEN-MPU6050_Beispielcode.zip

Sie können nun mit dem folgenden Befehl das Programm ausführen:

```
python3 ~/SEN-MPU6050_Beispielcode/MPU6050.py
```

Dabei erhalten Sie die folgende Konsolenausgabe:

1.: Dieser Wert gibt die Temperatur an.

- 2.: Diese 3 Werte geben die x y und z Achsenwerte des Gyroskops an.
- 3.: Diese 3 Werte geben die x y und z Achsenwerte des Beschleunigungssensors an.
- 4.: Diese Werte geben die momentane Neigung des Sensors in Grad an.

4. INBETRIEBNAHME MIT DEM ARDUINO				
	Arduino Uno	MPU6050		
	5V	VCC		
	GND	GND		
	SCL (A5)	SCL		
	SDA (A4)	SDA		

Um den MPU6050 mit dem Arduino nutzen zu können, müssen Sie zunächst Ihre Arduino IDE auf das verwendete Board und den verwendeten Port einstellen. In unserem Beispiel verwenden wir einen Arduino UNO und der Port ist COM12.

We	kzeuge Hilfe	
	Automatische Formatierung	Strg+T
	Sketch archivieren	
	Kodierung korrigieren & neu lader	1
	Bibliotheken verwalten	Strg+Umschalt+I
	Serieller Monitor	Strg+Umschalt+M
	Serieller Plotter	Strg+Umschalt+L
	WiFi101 / WiFiNINA Firmware Upd	ater
ſ	Board: "Arduino/Genuino Uno"	
L	Port: "COM12 (Arduino/Genuino L	Jno)"
	Boardinformationen holen	
	Programmer: "AVRISP mkll"	>
	Bootloader brennen	

Fügen Sie nun folgenden Quellcode in ihre Arduino IDE ein und drücken Sie auf Hochladen.

```
#include "Wire.h" // Importieren der I2C Bibliothek.
const int I2C_adress_MPU = 0x68; // I2C Adresse des MPU6050.
int16_t Beschleunigung_x, Beschleunigung_y, Beschleunigung_z;
// Variablen f
ür den Beschleunigungssensor
int16_t gyro_x, gyro_y, gyro_z; // Variablen für das Gyroscope
int16_t Temperatur; // Variable in der die Temperatur gespeichert wird
char tmp str[7];
char* convert_int16_to_str(int16_t i) {
  sprintf(tmp_str, "%6d", i);
  return tmp_str;
}
void setup() {
  Serial.begin(9600);
  Wire.begin();
  Wire.beginTransmission(I2C_adress_MPU); // Starten der I2C übertragung
  Wire.write(0x6B);
  Wire.write(0);
  Wire.endTransmission(true);
}
```

Fortsetzung des Quellcodes auf der nächsten Seite.

Fortsetzung des Quellcodes:

```
void loop() {
  Wire.beginTransmission(I2C adress MPU);
  Wire.write(0x3B);
  Wire.endTransmission(false);
  Wire.requestFrom(I2C_adress_MPU, 7*2, true);
  Beschleunigung_x = Wire.read()<<8 | Wire.read();</pre>
  Beschleunigung_y = Wire.read()<<8 | Wire.read();</pre>
  Beschleunigung_z = Wire.read()<<8 | Wire.read();</pre>
  Temperatur = Wire.read()<<8 | Wire.read();</pre>
  gyro_x = Wire.read()<<8 | Wire.read();</pre>
  gyro_y = Wire.read()<<8 | Wire.read();</pre>
  gyro_z = Wire.read()<<8 | Wire.read();</pre>
  // Ausgeben der Daten
  Serial.print("aX = "); Serial.print(convert_int16_to_str(Beschleunigung_x));
  Serial.print(" | aY = "); Serial.print(convert_int16_to_str(Beschleunigung_y));
  Serial.print(" | aZ = "); Serial.print(convert_int16_to_str(Beschleunigung_z));
  Serial.print(" | tmp = "); Serial.print(Temperatur/340.00+36.53);
Serial.print(" | gX = "); Serial.print(convert_int16_to_str(gyro_x));
  Serial.print(" | gY = "); Serial.print(convert_int16_to_str(gyro_y));
  Serial.print(" | gZ = "); Serial.print(convert_int16_to_str(gyro_z));
  Serial.println();
  // 1 Sekunde Pause
  delay(1000);
}
```

Drücken Sie nun auf die rot markierte Schaltfläche, um den seriellen Monitor aufzurufen.

Stellen Sie nun sicher, dass die Baudrate (rote Schaltfläche im Bild) auf 9600 eingestellt ist.

💿 со	M12		-	
				Senden
aX =	-816 aY = -14892 aZ =	3972 tmp = 28.91 gX = 248	gY = 459 gZ =	59 🔺
aX =	-852 aY = -14844 aZ =	4024 tmp = 28.91 gX = 281	gY = 487 gZ =	45
aX =	-904 aY = -14756 aZ =	4036 tmp = 29.00 gX = 205	gY = 481 gZ =	59
aX =	-848 aY = -14840 aZ =	4076 tmp = 28.95 gX = 221	gY = 488 gZ =	41
aX =	-804 aY = -14768 aZ =	3936 tmp = 28.95 gX = 137	gY = 498 gZ =	6
aX =	-800 aY = -14764 aZ =	4032 tmp = 28.95 gX = 275	gY = 480 gZ =	50
aX =	-804 aY = -14784 aZ =	4120 tmp = 28.86 gX = 211	gY = 490 gZ =	58
aX =	-776 aY = -14944 aZ =	4020 tmp = 28.95 gX = 242	gY = 453 gZ =	51
aX =	-840 aY = -14788 aZ =	4092 tmp = 28.95 gX = 280	gY = 500 gZ =	56
aX =	-932 aY = -14812 aZ =	3992 tmp = 28.95 gX = 272	gY = 509 gZ =	85
aX =	-928 aY = -14836 aZ =	3920 tmp = 29.00 gX = 237	gY = 482 gZ =	81
aX =	-912 aY = -14896 aZ =	4132 tmp = 28.95 gX = 248	gY = 480 gZ =	43
aX =	-744 aY = -14844 aZ =	4092 tmp = 29.00 gX = 271	gY = 477 gZ =	27
				~
Auto	scroll Zeitstempel anzeigen	Neue Zeile	✓ 9600 Baud	Ausgabe löschen

Nun können Sie die vom Sensor gemessenen Werte ablesen.

- 1.: Dieser Wert ist der X-Achsenwert des Beschleunigungssensors.
- 2.: Dieser Wert ist der Y-Achsenwert des Beschleunigungssensors.
- 3.: Dieser Wert ist der Z-Achsenwert des Beschleunigungssensors.
- **4**.: Dieser Wert gibt die momentane Temperatur an.
- 5.: Dieser Wert ist der X-Achsenwert des Gyroskops.
- 6.: Dieser Wert ist der Y-Achsenwert des Gyroskops.
- 7.: Dieser Wert ist der Z-Achsenwert des Gyroskops.

Anschluss:

	VCC SND SCL SDA XDA XCL ADO INT XXL ADO XXL ADO XXL ADO XXX XXX ADO XXX XXX XXX XXX XXX XXX XXX X	
	micro:bit	MPU6050
	3V	VCC
	GND	GND
	SCL (P19)	SCL
	SDA (P20)	SDA

Für den micro:bit verwenden wir MakeCode, welches Sie <u>hier</u> im Browser öffnen können. Für den micro:bit stellen wir die Bibliothek <u>SEN-MPU6050</u> zur Verfügung, welche unter der <u>MIT-Lizenz</u> veröffentlicht wurde. In MakeCode können Sie sich die Blöcke in Ihr Projekt laden unter **Fortgeschrit***ten* → *Erweiterungen*. Dort können Sie nach **SEN-MPU6050** suchen und auswählen.

Wir stellen Ihnen einen Beispielcode zur Verfügung, welchen Sie <u>hier</u> herunterladen können. Dieser Code wird Ihnen die identische Ausgabe wie beim Raspberry Pi liefern. Sie laden sich den Code auf dem micro:bit, indem Sie die Datei auf dem micro:bit abspeichern. Nun können Sie die Werte des Sensors in der Konsole in MakeCode sehen. Unsere Informations- und Rücknahmepflichten nach dem Elektrogesetz (ElektroG)

Symbol auf Elektro- und Elektronikgeräten:

Diese durchgestrichene Mülltonne bedeutet, dass Elektro- und Elektronikgeräte **nicht** in den Hausmüll gehören. Sie müssen die Altgeräte an einer Erfassungsstelle abgeben. Vor der Abgabe haben Sie Altbatterien und Altakkumulatoren, die nicht vom Altgerät umschlossen sind, von diesem zu trennen.

Rückgabemöglichkeiten:

Als Endnutzer können Sie beim Kauf eines neuen Gerätes, Ihr Altgerät (das im Wesentlichen die gleiche Funktion wie das bei uns erworbene neue erfüllt) kostenlos zur Entsorgung abgeben. Kleingeräte bei denen keine äußere Abmessungen größer als 25 cm sind können unabhängig vom Kauf eines Neugerätes in Haushaltsüblichen Mengen abgeben werden.

Möglichkeit Rückgabe an unserem Firmenstandort während der Öffnungszeiten:

Simac GmbH, Pascalstr. 8, D-47506 Neukirchen-Vluyn

Möglichkeit Rückgabe in Ihrer Nähe:

Wir senden Ihnen eine Paketmarke zu mit der Sie das Gerät kostenlos an uns zurücksenden können. Hierzu wenden Sie sich bitte per E-Mail an Service@joy-it.net oder per Telefon an uns.

Informationen zur Verpackung:

Verpacken Sie Ihr Altgerät bitte transportsicher, sollten Sie kein geeignetes Verpackungsmaterial haben oder kein eigenes nutzen möchten kontaktieren Sie uns, wir lassen Ihnen dann eine geeignete Verpackung zukommen.

7. SUPPORT

Wir sind auch nach dem Kauf für Sie da. Sollten noch Fragen offen bleiben oder Probleme auftauchen stehen wir Ihnen auch per E-Mail, Telefon und Ticket-Supportsystem zur Seite.

E-Mail: service@joy-it.net Ticket-System: <u>https://support.joy-it.net</u> Telefon: +49 (0)2845 9360 – 50 (Mo - Do: 09:00 - 17:00 Uhr, Fr: 09:00 - 14:30 Uhr)

Für weitere Informationen besuchen Sie unsere Website: **www.joy-it.net**

Veröffentlicht: 15.04.2024