

ANALOG-DIGITAL WANDLER COM-KY053ADC

Joy-IT powered by SIMAC Electronics GmbH - Pascalstr. 8 - 47506 Neukirchen-Vluyn - www.joy-it.net

Sehr geehrter Kunde,

vielen Dank, dass Sie sich für unser Produkt entschieden haben. Im Folgenden zeigen wir Ihnen, was bei der Inbetriebnahme und der Verwendung zu beachten ist.

Sollten Sie während der Verwendung unerwartet auf Probleme stoßen, so können Sie uns selbstverständlich gerne kontaktieren.

2. ÄNDERUNG DER I2C ADRESSE

Dieser Analog zu Digital Wandler (oder in kurz ADC) kann auf 4 verschiedene I2C Adressen konfiguriert werden. Diese können frei gewählt werden, aber im weiteren Verlauf wird die Standardadresse 0x48 benutzt.

In der folgenden Tabelle können Sie alle möglichen Adressen einsehen und auch wie diese zu konfigurieren sind. Hierbei ist hauptsächlich zu beachten, dass der ADDR Pin des ADC verantwortlich ist für die Änderung der Adresse.

Von	Zu	Adresse
ADDR Pin	GND Pin	0x48
ADDR Pin	VDD Pin	0x49
ADDR Pin	SDA Pin	0x4A
ADDR Pin	SCL Pin	0x4B

Der Zustand des ADDR-Pins wird kontinuierlich abgetastet. Achten Sie darauf, den ADDR-Pin mit den anderen Pins zu verbinden und gleichzeitig die Möglichkeit zu gewährleisten, dass diese weiter verbunden werden können.

3. PINBELEGUNG

In diesem Abschnitt erklären wir Ihnen kurz die Funktionen der einzelnen Pins.

VDD & GND: Spannungsversorgung	
SCL & SDA: I2C Schnittstelle	SCL /
ADDR: Dient dazu die I2C-Slave- Adresse aus zu wählen.	SDA ADS1115 ADDR
ALRT: Dient dazu ein Signal zu sen- den, wenn die Umwandlung bereit	ALRT OT +POA
Ausgang bereit ist.	A1
A0 bis A4: Analoge Eingänge.	A3

Diese Anleitung wurde unter Raspberry Pi OS Bookworm für den Raspberry Pi 4 und 5 geschrieben. Es wurde keine Überprüfung mit neueren Betriebssystemen oder Hardware durchgeführt.

4.1. Anschluss

Raspberry Pi	KY-053	Extern
3,3V	VDD	-
GND	GND	-
SCL (Pin 5)	SCL	-
SDA (Pin 3)	SDA	-
-	ADDR	-
-	ALRT	-
-	A0	Zu messende analoge Signalquelle
-	A1	Zu messende analoge Signalquelle
-	A2	Zu messende analoge Signalquelle
-	A3	Zu messende analoge Signalquelle

Hier ist der Analog-Digital Wandler an **3,3 V** angeschlossen. Somit kann der Wandler **nur 3,3 V** auf den analogen Eingängen messen, ohne bleibende Schäden zu erleiden.

Die Spannung auf den analogen Eingängen darf also, höchstens genauso hoch wie die Versorgungsspannung sein.

Wenn Sie den Analog-Digital Wandler mit 5 V betreiben möchten, benötigen Sie einen <u>Spannungswandler</u> für die Datenleitungen, da der Raspberry Pi bei einem Logiklevel von 5 V beschädigt werden kann.

<u>4.2. Installation</u>

Zunächst müssen Sie I2C auf Ihren Raspberry Pi aktivieren. Um die Konfiguration zu öffnen, geben Sie den folgenden Befehl ein:

sudo raspi-config

Wählen Sie dort **3** Interface Options \rightarrow 14 I2C aus und aktivieren Sie die I2C-Schnittstelle.

Sie haben nun erfolgreich I2C aktiviert. Der Analog-Digital Wandler ist jetzt unter der I2C-Adresse **0x48** erreichbar, welche bei diesem Sensor standardmäßig gesetzt ist. Die I2C Adresse wird anders sein, wenn Sie diese bereits konfiguriert haben sollten, bevor Sie Ihren Raspberry Pi konfiguriert haben.

Installieren Sie nun pip3 mit dem folgendem Befehl:

```
sudo apt-get install python3-pip
```

Als nächstes muss die virtuelle Umgebung eingerichtet werden. Geben Sie dazu die folgenden Befehle ein:

mkdir dein_projekt

cd dein_projekt

python -m venv --system-site-packages env

source env/bin/activate

Wir verwenden für unser Codebeispiel die <u>Adafruit CircuitPython ADS1x15</u> Bibliothek, welche unter der <u>MIT-Lizenz</u> veröffentlicht wurde. Mit dem folgenden Befehlen laden Sie sich diese Bibliothek herunter und installieren sie.

pip3 install adafruit-circuitpython-ads1x15

4.3. Codebeispiel

Nachdem Sie dann die Bibliothek heruntergeladen haben, brauchen Sie nur mit folgendem Befehl

nano COM-KY053ADC-RPi.py

eine neue Datei auf Ihrem Raspberry Pi zu erstellen und dann den folgenden Code in die so eben erstellt Datei kopieren oder Sie laden diesen <u>hier</u> herunterladen.

```
import time
import board
import busio
import adafruit ads1x15.ads1115 as ADS
from adafruit ads1x15.analog in import AnalogIn
# Den I2C-Bus erstellen
i2c = busio.I2C(board.SCL, board.SDA)
# Erstellen des ADC-Objekts über den I2C-Bus
ads = ADS.ADS1115(i2c)
# Single-Ended-Eingang auf Kanälen erstellen
chan0 = AnalogIn(ads, ADS.P0)
chan1 = AnalogIn(ads, ADS.P1)
chan2 = AnalogIn(ads, ADS.P2)
chan3 = AnalogIn(ads, ADS.P3)
while True:
    print("Kanal 0: ","{:>5}\t{:>5.3f}".format
(chan0.value, chan0.voltage))
    print("Kanal 1: ","{:>5}\t{:>5.3f}".format
(chan1.value, chan1.voltage))
    print("Kanal 2: ","{:>5}\t{:>5.3f}".format
(chan2.value, chan2.voltage))
    print("Kanal 3: ","{:>5}\t{:>5.3f}".format
(chan3.value, chan3.voltage))
    print("---
----")
    time.sleep(1)
```

In diesem Codebeispiel wird Ihnen der digitale Wert mit der dazugehörigen Spannung der einzelnen Eingänge angezeigt. Die Messungen eines Eingangs, an dem keine Spannung anliegt, ist fehlerhaft und ist dadurch nicht repräsentativ.

Das Codebeispiel können Sie dann mit STRG+O speichern und mit STRG+X schließen.

Anschließend brauchen Sie das Codebeispiel dann nur noch auszuführen mit folgendem Befehl.

python3 COM-KY053ADC-RPi.py

5.1. Anschluss

Arduino	KY-053	Extern
3,3V	VDD	-
GND	GND	-
SCL (A5)	SCL	-
SDA (A4)	SDA	-
-	ADDR	-
-	ALRT	-
-	A0	Zu messende analoge Signalquelle
-	A1	Zu messende analoge Signalquelle
-	A2	Zu messende analoge Signalquelle
-	A3	Zu messende analoge Signalquelle

Hier ist der Analog-Digital Wandler an 5 V angeschlossen. Somit kann der Wandler nur 5 V auf den analogen Eingängen messen, ohne bleibende Schäden zu erleiden.

Die Spannung auf den analogen Eingängen darf also, höchstens genauso hoch wie die Versorgungsspannung sein.

5.2. Installation

Für unser Codebeispiel verwenden wir die Bibliothek <u>ADS1X15</u> von <u>RobTillaart</u>, welche unter der <u>MIT-Lizenz</u> veröffentlicht wurde. Sie können diese Bibliothek installieren, in dem Sie unter *Sketch* → *Bibliothek einbinden* → *Bibliotheken verwalten...* nach ADS1X15 suchen. Nun müssen Sie nur noch auf den *Installieren*-Button klicken.

5.3. Codebeispiel

Zum Testen Ihres ADC mit einem Codebeispiel gehen Sie in Ihrer Arduino IDE einfach auf **Datei** -> **Beispiele** -> **ADS1X15 und dann auf ADS_read...** Klicken Sie auf **Hochladen**, um das Codebeispiel auf Ihren Arduino zu laden. Anschließend, um die Ausgaben des Beispielcodes angezeigt zu bekommen, öffnen Sie den **seriellen Monitor** mit einer Baudrate von **115200**. Sie können das Codebeispiel auch <u>hier</u> herunterladen.

In diesem Codebeispiel wird Ihnen der digitale Wert mit der dazugehörigen Spannung der einzelnen Eingänge angezeigt. Die Messungen eines Eingangs, an dem keine Spannung anliegt, ist fehlerhaft und ist dadurch nicht repräsentativ.

6. VERWENDUNG MIT DEM MICRO:BIT

VDD KY-053 GND <u>JOY</u>-II SCL SDA ADDR ALRT A0 A1 A2 A3

Micro:Bit	KY-053	Extern
3,3V	VDD	-
GND	GND	-
Pin 19	SCL	-
Pin 20	SDA	-
-	ADDR	-
-	ALRT	-
-	A0	Zu messende analoge Signalquelle

6.1. Anschluss

-	A1	Zu messende analoge Signalquelle
-	A2	Zu messende analoge Signalquelle
-	A3	Zu messende analoge Signalquelle

Möglicherweise müssen Sie ein Breakoutboard verwenden um an manche Pins Ihres Micro:Bits Kabel anschließen zu können. Bei diesem Beispiel wird ein Breakoutboard benutzt. Wir empfehlen hierfür das Breakoutboard für Micro:Bit von Joy-IT.

<u>6.2. Installation</u>

Zur Ansteuerung empfehlen wir die Verwendung der <u>pxt-ads1115</u> <u>Bibliothek</u>, die von <u>uns</u> unter der <u>MIT-Lizenz</u> veröffentlicht wurde.

Die Bibliothek können Sie hinzufügen, indem Sie auf der <u>Makecode Seite</u> auf **Erweiterungen** klicken und dort dann **ADS1115** in der Suchleiste eingeben. Nachdem Sie das getan haben, müssen Sie nur noch auf die Erweiterung klicken, um diese automatisch für Ihr aktuelles Projekt hinzuzufügen.

6.3. Codebeispiel

Zum Testen Ihres ADC können Sie <u>hier</u> ein Codebeispiel von uns herunterladen oder wie unten gezeigt den Code einfach selber nachbauen.

Wenn Sie sich dazu entschieden haben unser Codebeispiel herunterzuladen, dann können Sie **nach dem Entpacken** der Datei den Inhalt einfach per Drag-and-Drop auf die Makecode Internetseite ziehen und loslassen, um die Datei zu importieren und automatisch zu öffnen.

beim Start	dauerhaft
Stellen Sie den Modus auf MULTI 🔻	seriell Zeile ausgeben Auf Kanal 0 lesen
Stellen Sie die Verstaerkung auf ZWEI 🔻	seriell Text ausgeben Auf Kanal 0 lesen Wert zu Spannung
Stellen Sie die Abtastrate auf RATE5_128SPS ▼	seriell Zeile ausgeben v
ADS1115 mit Adresse GND_0x48 ▼ initialisieren	seriell Zeile ausgeben
	pausiere (ms) 500 -

6.4 Kopplung des Micro:Bit

Klicken Sie auf die Schaltfläche, welche sich rechts neben Hochladen/Herunterladen befindet.

Klicken Sie auf *Gerät verbinden*.

Klicken Sie auf *Weiter*.

Klicken Sie auf *Weiter*.

Wählen Sie Ihren Micro:Bit im geöffneten Fenster aus und klicken Sie auf **Verbinden**, um diesen zu verbinden und benutzen zu können.

Als letztes müssen Sie nun noch auf **Fertig** klicken, um im Anschluss Ihren Code hochladen zu können. Sie laden ihren Code hoch indem Sie auf Hochladen klicken.

Microsoft Omicro:bit	🖈 Blöcke 🗾 🖬 JavaScript 🗸	*	<	8	٠
	Suche Q III Grundlagen bein Start O Eingabe Stellen Sie den Modus auf MULTI * Stellen Sie die Abtastrate auf RAIES_228595 * Auf Kanal • lesen Wert zu Spannung Stellen Sie die Abtastrate auf RAIES_228595 * Auf Lein Stellen Sie die Abtastrate auf RAIES_228595 * ADS1115 Mult Adresse GAD Gw48 * initialisieren seriell Zeile ausgeben **				
	C Schleifen Schleifen X Logik Dein microbit ist verbunden! Durch Drücken von "Download" wird dein Code nun automatisch in deinen microbit kopiert. Mathematik Dein microbit ist verbunden! Durch Drücken von "Download" wird dein Code nun automatisch in deinen microbit kopiert. Verbunden du diesen microbit kopiert. Wenn du diesen microbit kopiert. Verbunden du diesen microbit hoppeln musst, kannst du dies über das Menü ' neben dem Download" Button tun				
। 2 से 🕫 🕸	Fertig				
Herunterladen ••••			5	~ •	•

Nachdem Sie nun Ihren Micro:Bit gekoppelt haben, können Sie die serielle Ausgabe öffnen und Ihre Ergebnisse einsehen.

Unsere Informations- und Rücknahmepflichten nach dem Elektrogesetz (ElektroG)

X

Symbol auf Elektro- und Elektronikgeräten:

Diese durchgestrichene Mülltonne bedeutet, dass Elektro- und Elektronikgeräte **nicht** in den Hausmüll gehören. Sie müssen die Altgeräte an einer Erfassungsstelle abgeben. Vor der Abgabe haben Sie Altbatterien und Altakkumulatoren, die nicht vom Altgerät umschlossen sind, von diesem zu trennen.

Rückgabemöglichkeiten:

Als Endnutzer können Sie beim Kauf eines neuen Gerätes, Ihr Altgerät (das im Wesentlichen die gleiche Funktion wie das bei uns erworbene neue erfüllt) kostenlos zur Entsorgung abgeben. Kleingeräte, bei denen keine äußere Abmessungen größer als 25 cm sind können unabhängig vom Kauf eines Neugerätes in haushaltsüblichen Mengen abgeben werden.

Möglichkeit Rückgabe an unserem Firmenstandort während der Öffnungszeiten:

SIMAC Electronics GmbH, Pascalstr. 8, D-47506 Neukirchen-Vluyn

Möglichkeit Rückgabe in Ihrer Nähe:

Wir senden Ihnen eine Paketmarke zu, mit der Sie das Gerät kostenlos an uns zurücksenden können. Hierzu wenden Sie sich bitte per E-Mail an <u>Service@joy-it.net</u> oder per Telefon an uns.

Informationen zur Verpackung:

Verpacken Sie Ihr Altgerät bitte transportsicher, sollten Sie kein geeignetes Verpackungsmaterial haben oder kein eigenes nutzen möchten kontaktieren Sie uns, wir lassen Ihnen dann eine geeignete Verpackung zukommen.

7. SUPPORT

Wir sind auch nach dem Kauf für Sie da. Sollten noch Fragen offen bleiben oder Probleme auftauchen, stehen wir Ihnen auch per E-Mail, Telefon und Ticket-Supportsystem zur Seite.

E-Mail: <u>service@joy-it.net</u> Ticket-System: <u>https://support.joy-it.net</u> Telefon: +49 (0)2845 9360-50 (Mo - Do: 09:00 - 17:00 Uhr, Fr: 09:00 - 14:30 Uhr)

Für weitere Informationen besuchen Sie unsere Website: **www.joy-it.net**

Veröffentlicht: 09.04.2024